Tag Archives: Armand Brumer

The paramodular conjecture is false for trivial reasons

(This is part of a series of occasional posts discussing results and observations in my joint paper with Boxer, Gee, and Pilloni mentioned here.) Brumer and Kramer made a conjecture positing a bijection between isogeny classes of abelian surfaces over … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , | 6 Comments

Abelian Surfaces are Potentially Modular

Today I wanted (in the spirit of this post) to report on some new work in progress with George Boxer, Toby Gee, and Vincent Pilloni. Recal that, for a smooth projective variety X over a number field F unramified outside … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments