Tag Archives: Buzzard

144169

The space of classical modular cuspforms of level one and weight 24 has dimension two — the smallest weight for which the dimension is not zero or one. What can we say about the Hecke algebra acting on this space … Continue reading

Posted in Mathematics | Tagged , , , | 4 Comments

Review of Buzzard-Gee

This is a review of the paper “Slopes of Modular Forms” submitted for publication in a Simons symposium proceedings volume. tl;dr: This paper is a nice survey article on questions concerning the slopes of modular forms. Buzzard has given a … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , | 6 Comments

Is Serre’s conjecture still open?

The conjecture in this paper has indeed been proven. But that isn’t the entire story. Serre was fully aware of Katz modular forms of weight one. However, Serre was too timid was prudently conservative and made his conjecture only for … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , | 2 Comments

Are Galois deformation rings Cohen-Macaulay?

Hyman Bass once wrote a paper on the ubiquity of Gorenstein rings. The first time they arose in the context of Hecke algebras, however, was Barry’s Eisenstein ideal paper, where he proves (at prime level) that the completions are Gorenstein … Continue reading

Posted in Mathematics | Tagged , , , , , , , | 1 Comment

Robert Coleman

I was very sad to learn that, after a long illness with multiple sclerosis, Robert Coleman has just died. Robert’s influence on mathematics is certainly obvious to all of us in the field. Most of my personal interaction with him … Continue reading

Posted in Uncategorized | Tagged , , | 2 Comments

Local crystalline deformation rings

I just returned from a very pleasant conference in Puerto Rico courtesy of the Simons Foundation (general advice: if you live in Chicago, always accept invitations to conferences in January). One thing I learnt from Toby Gee was the following … Continue reading

Posted in Mathematics | Tagged , , , , | 1 Comment

The mystery of the primes

No, this is not the sequel to Marcus du Sautoy’s book, but rather a curious observation regarding George Schaeffer’s tables of “ethereal” weight one Katz modular eigenforms (which you can find starting on p.64 here). Let be a positive integer, … Continue reading

Posted in Mathematics | Tagged , , , , , | 4 Comments