Tag Archives: David Helm

Local-global compatibility for imaginary quadratic fields

One of the key steps in the 10-author paper is to prove results on local-global compatibility for Galois representations associated to torsion classes. The results proved in that paper, unfortunately, fall well-short of the optimal desired local-global compatibility statement, because … Continue reading

Posted in Uncategorized | Tagged , , , , , , , , , , , , | 5 Comments

Jacquet-Langlands and a new R=T conjecture

It is somewhat mysterious how one should formulate the Jacquet-Langlands correspondence integrally, particularly in the presence of torsion classes. Even the classical case has many subtleties including for example some results in this paper of Ribet. In the case of … Continue reading

Posted in Uncategorized | Tagged , , , , , , , , | 4 Comments

And then there were 8:

News from Minnesota on the 8-author paper has arrived! http://math.uchicago.edu/~fcale/blog/8author.mp4

Posted in Mathematics | Tagged , , , , | 3 Comments

New Results In Modularity, Christmas Update

It’s a Christmas miracle! Keen watchers of this blog will be happy to learn that the 10 author paper discussed here and here is now available. (And just in case you also missed it, you can also find the other … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , | 7 Comments

Update on Sato-Tate for abelian surfaces

Various people have asked me for an update on the status of the Sato-Tate conjecture for abelian surfaces in light of recent advances in modularity lifting theorems. My student Noah Taylor has exactly been undertaking this task, and this post … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

New Results in Modularity, Part II

This is part two of series on work in progress with Patrick Allen, Ana Caraiani, Toby Gee, David Helm, Bao Le Hung, James Newton, Peter Scholze, Richard Taylor, and Jack Thorne. Click here for Part I It has been almost … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 7 Comments

New Results In Modularity, Part I

I usually refrain from talking directly about my papers, and this reticence stems from wishing to avoid any appearance of tooting my own horn. On the other hand, nobody else seems to be talking about them either. Moreover, I have … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 12 Comments