Tag Archives: George Boxer

Mazur 80

Last week I was in Cambridge for Barry’s 80th birthday conference. If you are wondering why it took so long for Barry to get a birthday conference, that’s probably because you didn’t know that there was *also* a 60th birthday … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 10 Comments

Upcoming Attractions

There’s a packed schedule for graduate classes at Chicago next Fall: Ngô Bảo Châu on automorphic forms (TueTh 11:00-12:30), Akhil Mathew on perfectoid spaces (MWF 12:30-1:30), and George Boxer and me on (higher) Hida theory (MW 1:30-3:00). Strap yourself in! … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , | 1 Comment

The paramodular conjecture is false for trivial reasons

(This is part of a series of occasional posts discussing results and observations in my joint paper with Boxer, Gee, and Pilloni mentioned here.) Brumer and Kramer made a conjecture positing a bijection between isogeny classes of abelian surfaces over … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , | 6 Comments

Abelian Surfaces are Potentially Modular

Today I wanted (in the spirit of this post) to report on some new work in progress with George Boxer, Toby Gee, and Vincent Pilloni. Recal that, for a smooth projective variety X over a number field F unramified outside … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

Swimming Leaderboard

The first rule of number theory swim club is…talk about number theory swim club! Anyone can join, as long as you are a number theorist at the University of Chicago with a current gym membership. The standard meeting time is … Continue reading

Posted in Sport | Tagged , , , , | Leave a comment

Serre 1: Calegari 0

I just spent a week or so trying to determine whether Serre’s conjecture about the congruence subgroup property was false for a very specific class of S-arithmetic groups. The punch line, perhaps not surprisingly, was that I had made an … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , | Leave a comment

Inverse Galois Problems II

David Zywina was in town today to talk about a follow up to his previous results mentioned previously on this blog. This time, he talked about his construction of Galois groups which were simple of orthogonal type, in particular, the … Continue reading

Posted in Mathematics | Tagged , , , , , , | 1 Comment