
Recent Posts
Categories
Blogroll
Recent Comments
Archives
 March 2017
 February 2017
 January 2017
 December 2016
 November 2016
 October 2016
 August 2016
 June 2016
 May 2016
 April 2016
 March 2016
 October 2015
 September 2015
 August 2015
 July 2015
 June 2015
 May 2015
 April 2015
 March 2015
 February 2015
 January 2015
 December 2014
 November 2014
 October 2014
 September 2014
 August 2014
 July 2014
 June 2014
 May 2014
 April 2014
 March 2014
 February 2014
 January 2014
 December 2013
 November 2013
 October 2013
 September 2013
 August 2013
 July 2013
 June 2013
 May 2013
 April 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 Agol Akshay Venkatesh andras schiff Bach Barry Mazur Bergeron Borel Bourgeois Pig Buzzard Chess Class Number Problem Coffee Coleman completed cohomology cricket CSO cyclotomic integers David Geraghty Deligne Ellenberg Elsevier Emerton Fargues Fermat Fred Diamond Fred Diamond's Beard Galois Representations Gee George Boxer Geraghty Glenn Gould Gowers Gross Grothendieck Hida Hilbert modular forms Intelligentsia Inverse Galois Problem Joel Specter John Voight Jordan Ellenberg Ktheory KaiWen Kevin Buzzard Langlands Leopoldt Conjecture Matthew Emerton Michael Harris MO modular forms MSRI Music Nonsense Ouroboros Peter Scholze Poonen Puzzle Richard Moy RLT Schaeffer Schoenberg Scholze Schubert Serre Soule subfactors Tate Thorne Tilting Toby Gee torsion Venkatesh Weinstein Zagier Zywina
Meta
Tag Archives: Inverse Galois Problem
Central Extensions, Updated
I previously mentioned a problem concerning polynomials, whose motivation came from thinking about weight one forms and the inverse Galois problem for finite subgroups of I still like the polynomial problem, but I realized that I was confused about the … Continue reading
Posted in Mathematics
Tagged A5, Darstellungsgruppe, Inverse Galois Problem, Trivialities
Leave a comment
Prime divisors of polynomials
A heuristic model from the last post suggests that the “expected” order of the Galois group associated to a weight one modular form of projective type is infinite. And when one tries to solve the inverse Galois problem for central … Continue reading
Posted in Mathematics
Tagged Central Extensions, Inverse Galois Problem, Polynomials, Sieving
5 Comments
Inverse Galois Problems II
David Zywina was in town today to talk about a follow up to his previous results mentioned previously on this blog. This time, he talked about his construction of Galois groups which were simple of orthogonal type, in particular, the … Continue reading
Posted in Mathematics
Tagged George Boxer, Hodge Numbers, HodgeTate, Inverse Galois Problem, Siegel Modular Forms, Stefan Patrikis, Zywina
1 Comment
Inverse Galois Problem
My favourite group as far as the inverse Galois problem goes is . This is not known to be a Galois group over for any , the difficulty of course being that is must correspond to an even Galois representation. … Continue reading
Posted in Mathematics
Tagged Galois Representations, Inverse Galois Problem, PSL(2), SL(2), Zywina
9 Comments