Tag Archives: James Newton

Update on Sato-Tate for abelian surfaces

Various people have asked me for an update on the status of the Sato-Tate conjecture for abelian surfaces in light of recent advances in modularity lifting theorems. My student Noah Taylor has exactly been undertaking this task, and this post … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

New Results in Modularity, Part II

This is part two of series on work in progress with Patrick Allen, Ana Caraiani, Toby Gee, David Helm, Bao Le Hung, James Newton, Peter Scholze, Richard Taylor, and Jack Thorne. Click here for Part I It has been almost … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

New Results In Modularity, Part I

I usually refrain from talking directly about my papers, and this reticence stems from wishing to avoid any appearance of tooting my own horn. On the other hand, nobody else seems to be talking about them either. Moreover, I have … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments

Hilbert Modular Forms of Partial Weight One, Part III

My student Richard Moy is graduating! Richard’s work has already appeared on this blog before, where we discussed his joint work with Joel Specter showing that there existed non-CM Hilbert modular forms of partial weight one. Today I want to … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , | 1 Comment