Tag Archives: Vincent Pilloni

Update on Sato-Tate for abelian surfaces

Various people have asked me for an update on the status of the Sato-Tate conjecture for abelian surfaces in light of recent advances in modularity lifting theorems. My student Noah Taylor has exactly been undertaking this task, and this post … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Mazur 80

Last week I was in Cambridge for Barry’s 80th birthday conference. If you are wondering why it took so long for Barry to get a birthday conference, that’s probably because you didn’t know that there was *also* a 60th birthday … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 16 Comments

The paramodular conjecture is false for trivial reasons

(This is part of a series of occasional posts discussing results and observations in my joint paper with Boxer, Gee, and Pilloni mentioned here.) Brumer and Kramer made a conjecture positing a bijection between isogeny classes of abelian surfaces over … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , | 6 Comments

Abelian Surfaces are Potentially Modular

Today I wanted (in the spirit of this post) to report on some new work in progress with George Boxer, Toby Gee, and Vincent Pilloni. Recal that, for a smooth projective variety X over a number field F unramified outside … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 7 Comments